Warning: Parameter 1 to wp_default_scripts() expected to be a reference, value given in /www/doc/www.luxvitaest.cz/www/wp-includes/plugin.php on line 571

Warning: Parameter 1 to wp_default_styles() expected to be a reference, value given in /www/doc/www.luxvitaest.cz/www/wp-includes/plugin.php on line 571

Our Blog


Non-vizuální vlivy světla na melatonin

Studie z roku 2011

Chellappa SL  Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
Steiner R, Blattner P, Oelhafen P, Götz T, Cajochen C,

Pozadí:

Vystavení světlu může nakupit mnoho vlivů na lidský cirkadiánní proces skrze non-obraz formující systém, jehož spektrální relevance je vyšší v rozpětí krátkých vlnových délek. Zde se zabýváme tím zdali komerčně dostupné kompaktní fluorescentní lampy s odlišnou teplotou chromatičnosti mohou mít vliv na postřeh a kognitivní schopnosti.

Metody:

Šestnáct zdravých mladých mužů bylo zkoumáno ve vyrovnaném cross-over designu s lehkým vystavením třem různým nastavením světel (kompaktní fluorescentní lampy se světlem o intenzitě 40 luxů a teplotě 6500K a  2500K a žhavící lampy o intenzitě 40 luxů při teplotě 3000K) v průběhu 2h večer

Výsledky:

Vystavení světlu 6500K způsobilo větší potlačení melatoninu, spolu se zvýšením subjektivního postřehu, pohodlí a vizuálního komfortu. S respektem ke kognitivním výkonům, světlo na 6500K vedlo k signifikantně rychlejším reakčním časům u úkonů spojených s neustálou pozorností (psychomotor Vigilance a GO/NOGO Task), ale ne u úkonů spojených s výkonnou funkcí (Paced Visual Serial Addition Task). Toto kognitivní zlepšení bylo silně spojeno s oslabením slinného melatoninu, zejména pro světlo při 6500K.

Závěr:
Naše výsledky naznačují, že citlivost lidské pozornosti a kognitivních reakcí na polychromatické světlo při hladinách tak nízkých jako 40 luxů, je blue-shifted relativně k tří čípkovému visuálnímu fotopickému systému. Tento výběr komerčně dostupných kompaktních fluorescentních světel s odlišnou teplotou chromatičnosti znatelně ovlivňují cirkadiánní fysiologii a kognitivní schopnosti jak v domácnosti, tak na pracovišti.

Studii naleznete na této adrese

Světlo bohaté na modrou má dobrý vliv na vaši pozornost.

Studie z roku 2008

Viola AU, Surrey Sleep Research Centre, Clinical Research Centre, Egerton Road, Guildford, United Kingdom
James LM, Schlangen LJ, Dijk DJ

Světlo bohaté na modrou vlnovou délku na pracovištích zlepšuje subjektivní pozornost, výkon a kvalitu spánku.

Cíle:

Specifikace a standardy pro instalaci světel v pracovním nastavení jsou založeny na spektrální citlivosti klasického visuálního systému a nepočítají s relativně nově objeveným na melanopsinu založeném modro světelném citlivém fotoreceptivním systému. Autoři studie zkoumají efekt vystavení bílému světlu bohatému na modrou vlnovou délku v průběhu denních pracovních hodin v kancelářském nastavení.

Metody:

Experiment byl proveden na 104 administrativních pracovnících ve dvou kancelářských podlažích. Po základních měřeních pod existujícím osvětlením byl každý účastník vystaven dvěma novým světelným nastavením, každému po dobu 4 týdnů. Jedno se skládalo z bílého světla bohatého na modrou vlnovou délku (17 000 K) a druhé z bílého světla ( 4 000 K). Pořadí bylo stejné v obou patrech. Dotazník a ratingové stupnice byly použity k posouzení bdělosti, nálady, kvality spánku, výkonu, mentálního pohodlí, bolestí hlavy a únavy očí a náladovosti v průběhu 8 týdnů.

Výsledky:

Všech 94 účastníků [průměrný věk 36,4 (SD 10.2) let] bylo zařazeno k vyhodnocení. V porovnání s bílým světlem (4 000 K), bílým světlem bohatým na modrou vlnovou délku (17 000 K) zlepšení subjektivního pocitu bdělosti (P<0.0001), pozitivní nálady (P=0.0001), výkonu (P<0.0001), večerní únavy (P=0.0001), popudlivosti  (P=0.004), koncentrace (P<0.0001), a očního diskomfortu (P=0.002). Denní ospalost byla snížena (P=0.0001), a kvalita (subjektivně) nočního spánku (P=0.016) byla zlepšena pod bílým světlem bohatým na modrou vlnovou délku.

Při očekávání účastníků o vlivu světla byla zapsána do analýzy jako kovariance, významný vliv přetrvával pro výkon , bdělost , večerní únavu , podrážděnost, problémy se zaostřením , soustředění , a rozmazané vidění.

Závěr:
Vystavení bílému světlu bohatému na modrou vlnovou délku v průběhu denních pracovních hodin zlepšuje subjektivní bdělost, výkon a pocit večerní únavy.

Studii naleznete na této adrese.

Marc Green Phd – Noční vidění

Článek z roku 2013

Marc Green Phd.

Noční vidění je významný faktor v procesu porozumění příčinám nehod, které se odehrávají za snížené viditelnosti. Zde, krátce nastiňuji nějaké základy, zhruba jaké bych očekával od svých studentů, aby je znali na konci úvodního kurzu vnímání.

[See related articles The Invisible Pedestrian and Police Shootings.]

 

Fotopické, mesopické a skotopické vidění

Lidé mohou vidět v rozsahu světelné intensity v řádech milionů až jednotek. Za účelem dosažení těchto mimořádných schopností a zároveň poskytnutí dobré kontrastní sensitivity, se oko přizpůsobuje převládajícím podmínkám a změní svůj způsob fungování ve vztahu k poklesu úrovně osvětlení v průběhu dne. Každá učebnice pro začátečníky zmiňuje čípky a tyčinky, a tak se laici těchto pojmů chytnou a příliš se na ně soustředí. Fotoreceptory samotné nejsou dostatečné pro vysvětlení nočního vidění. Co více, tyčinkové vidění a noční vidění nejsou synonymem. Více důležitým pojmem je “receptivní pole”, které je základem pro všechny vizuální procesy. Kdokoli kdo se vydává za experta na vidění/percepci musí mít důkladné znalosti o receptivních polích, jejich různých typech, jejich způsobu fungování, o tom jak se mění s rozdílnými podmínkami a jak určují schopnost vidění. Nebudu se pouštět do podrobného popisování receptivních polí, protože je to příliš obsáhlé téma. Nicméně, zmíním dvě z jejich vlastností, inhibici a konvergenci.

Jednotlivé čípky a tyčinky mají velmi podobnou sensitivitu na světlo. Oba reagují na stejný objem světla, přestože tyčinky reagují silněji. Hlavním rozdílem mezi denním a nočním viděním je inhibice a korvengemce, způsob kterým jsou fotoreceptory propojeny mezi sebou a množstvím na světlo citlivého fotopigmentu, který je k dispozici. Co více, nejvíce “nočního vidění” se děje v kombinovaném režimu čípků/tyčinek. Celková činnost oka při snížené úrovni osvětlení je lépe popsána  ve střech provozních režimech, fotopický, mesopický, skotopický. Fotopické vidění probíhá při vysokých světelných intenzitách a je charakteristický 1) čípkové receptory, 2) nízké senzitivitě na světlo, 3) vysokou ostrostí a 4) barevným viděním. Skotopické vidění probíhá při velmi nízkých světelných intenzitách a představuje 1) užití tyčinkových fotoreceptorů, 2) vysokou citlivoctí na světlo, 3) chabou ostrostí a 4) nebarevným viděním.
Celý článek naleznete na tomto odkaze.

Neuronový mechanismus pro exacerbace bolesti hlavy světlem

Studie z roku 2010

Rodrigo Noseda, Vanessa Kainz, Moshe Jakubowski, Joshua J. Gooley, Clifford B. Saper, Kathleen Digre, Rami Burstein

Vnímání migrénové bolesti hlavy, která je zprostředkována nociceptivními signály vysílanými z tvrdé mozkové pleny do mozku, se jednoznačně zhoršuje vystavením světlu. Zde ukazujeme, že zhoršení migrénové bolesti hlavy světlem přetrvává i mezi nevidomími lidmi, u kterých přetrvává  non-image formující fotoregulaci tváří v tvář masivní degeneraci čípků/tyčinek. Používáním single-unit záznamů a sledováním nervového traktu u krys, jsme identifikovali dura(tvrdá mozková plena)-citlivé neurony v zadním thalamu, jejichž aktivita byla zřetelně regulována světlem a jejichž axony vyčnívaly extensivně přes vrstvy I skrze V ze somatosenzorické, vizuální a asociativní kůry. Těla buněk a dendritů takových dura/světlo-citlivých neuronů byly vyznačeny axony pocházejícími z gangliových buněk sítnice, převážně z vnitřně-fotosenzitivních gangliových buněk sítnice – základního vedení non-obraz-formující fotoregulace. Domníváme se, že fotoregulace migrény je vyvíjena non-obraz formujícími sítnicovými cestami, které regulují aktivitu dura-citlivých thalamokortikálních neuronů.


Migréna je periodická, epizodická neurologická porucha charakterizovaná jako jednostranná, pulzující bolest hlavy, která je běžně spojena s celou řadou dalších symptomů (např, nevolnost, zvracení, podrážděnost, únava). Myslíme si, že bolest spojená s migrénou pochází z chemického dráždění mozkových plen, což vede k přenosu nociceptivních signálů z tvrdé pleny do mozku pomocí tzv trigeminovaskulární dráhy. Neurony prvního a druhého řádu v této dráze jsou, v tomto pořadí, senzorické neurony v trigeminální ganglie, které vyčnívají centrálně do nucleus spinalis nervi trigemini (SPV), a tvrdá mozková plena citlivé neurony v laminách I a V, které SPV které se projevují na posterior thalamus. Delší neuronální aktivace během záchvatu migrény je myšlenka k vyvolání periferní a centrální senzibilizace podél trigeminovaskulárních dráh, což vysvětluje pulzování bolesti hlavy a okolní pokožky hlavy a krku, svalů, citlivost a celotělové kožní alodynie

 

Více o této studii na tomto odkaze.

„Jasná světla, velký problém“ – článek Sky & telescope

Článek z roku 2006

J. Kelly Beatty and Rachel Thessin

Tak jako smrt a daně, nelze popřít, že venkovní osvětlení se stalo nevyhnutelnou součástí života. Pouliční lampy lemují naše cesty, billboardy zkrášlují naše dálnice, parkoviště nákupních center jsou ozářena od soumraku do úsvitu, podniky jsou posedlé noční bezpečností a zisku-chtivé krámky oslňují jeden druhý ve snaze přebrat zákazníky konkurenci. Zbavili jsme noc tmy a tím jsme vytvořili světelné znečištění, které okrádá oblohu o hvězdy.

Elektrická pouliční osvětlení jsou tu s námi od 1880 a netrvalo to dlouho než si nějací výrobci uvědomili visuální a úspory šetřící výhody světla směřujícího dolů na zem. V roce 1918 Holophane Blass Co. zveřejnilo úplně první návod na osvětlování silnic. S názvem Nová Éra v pouličním osvětlování. Kniha uvádí několik doporučených praktik, mezi nimi i úvahy zdravého rozumu jako že “světlo musí být zachováno nad horizontem” v další části, ruční poznámky:

Kromě dvou základních položek, vysoce efektivních lamp a jejich účinného použití , jak již zmiňováno, je velmi důležité si uvědomit, že systém pouličního osvětlení by měl produkovat efekt, který obklopuje oči těch kteří se po ulicích pohybují “podmínkami ”pod nimiž může oko bez problému správně využívat své funkce. Jakýkoli systém, který selhává v tomto aspektu, je špatný – nehledě na to jak účinné zdroje, či jak účinné světlo může být ve vztahu s povrchem ulice či předmětů na ní. Oslnění vážně snižuje výkon oka.

Naneštěstí téměř nikdo nedbal tohoto neopěvovaného mistra dobrých světelných postupů. Namísto toho se světelné znečištění způsobené umělým osvětlením znatelně zhoršilo v pozdním 20. století s rozšířením používání vysoce intensivních svítidel využívajících rtuťové a sodíkové výbojky, a se sociální proměnou, která má za důsledek mnohem větší počet lidí v ulicích během noci – a v pozdějších hodinách – než kdy dříve. Jak se zvýšil počet našich nočních toulek, tak se zvýšila i potřeba všudypřítomného nočního osvětlení. “decision-makers” začali přirovnávat “více světla” k “většímu bezpečí a zabezpečení”, i přesto že pro to neexistuje objektivní důkaz.

Celý článek naleznete na této adrese.

American Medical Association vyjádření k světelnému znečištění

Článek z roku 2012

Camille M. Carlisle

Výzkumníci upozorňují na několik možných zdravotních rizik spojených s vystavením světlu v průběhu noci, mezi nimi zvýšené riziko rakoviny.

Obvykle o světelném znečištění přemýšlím jako o problému astronomů. Kdo jiný by se zajímal o to zda je obloha tak ozářená, že není vidět Orion? (když nemohu vidět Orion, cítím se odkopnutě – ano, dokonce i v měsících kdy je v noci za horizontem). Ale tento problém má širší dosah nežli jen mou nevrlost. Boj se světelným znečištěním není pouze o viditelnosti hvězd, je to o naší vnímavosti v našem používání a redukci odpadu.

Prvním tématem ve vztahu k lidem, kterou se dokument zabývá je světelný smog, což spoluautor Dr. Mario Motta (Tufts Medical School) nastínil pro S&T čtenáře v roce 2009. Světelný smog je poměrně častým námětem k hovoru v diskuzích o světelném znečištění, z části proto, že s přibývajícím věkem řidičů se zhoršuje jejich schopnost vyrovnat se se špatně směřovaným světlem, které se ještě rozptýlí uvnitř oka. V roce 2009 AMA schválila Mottem předloženou rezoluci o podpoře využívání plně stíněných světel, jako jsou například pouliční osvětlení s plochým dnem. Nový report znovu potvrzuje tuto rezoluci. Přesto, jsem byl překvapen při zjištění, že American Medical Association nedávno zveřejnila report s titulkem “Světelné znečištění: Nepříznivé zdravotní dopady nočního osvětlení.” Jedná se o přehled několika dostupných výzkumů zabývajících se vlivem nočního osvětlení na člověka; nejedná se o nový výzkum provedený AMA, i když většina zvažovaných důsledků vyplývá z autorovi vlastní práce. Report má veliký záběr, ale není jasné jaký vliv nakonec bude tento přehled mít.

Zrakový vědec Gary Rubin (University College London) souhlasí se znepokojeními zmíněnými v reportu, říká že závěry jsou “vyvážené, dobře odůvodněné a důkladně prozkoumané.” Oslnění – na rozdíl od “diskomfortního oslnění”, který se u každého člověka liší – je jistě problém pro řidiče, říká s tím, že někteří pacienti katarakta měli druhou operaci na výměnu své nové nitrooční čočky za jiný druh, který způsobuje menší noční oslnění. A jak mnoho z nás ví ze své zkušenosti, moderní halogenové a LED světlomety mohou z nočního řízení udělat čiré utrpení. (Nemohu ani vypovědět kolikrát jsem musel odvrátit zrak od  jasných namodralých světlometů blížícího se auta a pomyslel jsem si se zžíravou blahosklonností, “je to opravdu nutné?”) Destruktivní efekt světla bohatého na modrou vlnovou délku na molekuly rhodopsinu (a.k.a. “visual purple”) na sítnici je to co činí tato světla tak bolestivá.

Celý článek naleznete zde.

Světlo senzitivní čípky

The Color-Sensitive Cones

In 1965 came experimental confirmation of a long expected result – there are three types of color-sensitive cones in the retina of the human eye, corresponding roughly to red, green, and blue sensitive detectors.

colcon

Více naleznete zde.

Zrak

Článek z roku 2011

Zdroj michaeldmann.net

Fotorecepce je obzvláště důležitý smysl pro mnoho primátů, včetně člověka, ale není to unikum primátů ani savců. Dokonce měkkýši mají fotoreceptory, ale jeden by se mohl ptát zdali staví zrak na stejnou úroveň, tak jako to máme my. Většina objektů odráží světlo, a protože světlo putuje vysokou rychlostí, je možné takřka okamžitě stanovit jejich tvar, velikost, pozici, rychlost a směr pohybu. Světelné paprsky vycházející z objektu jsou shromažďovány a koncentrovány na řadě fotoreceptorů. Aktivity generované světlem v různých fotoreceptorech interagují za účelem produkce dvou-dimenzionální reprezentace objektu, který je přenesen do mozku. Mozek poté rekonstruuje trojrozměrnou reprezentaci použitím informací získaných ze dvou očí. Výsledný produkt této aktivity vizuálního systému jsou vjemy, které reprezentují objekt a jeho okolí. Tyto vjemy mohou být vodítkem našeho bezprostředního chování , nebo mohou být uloženy pro budoucí použití . Vizuální vjemy obsahují velké množství informací , a pochopení těchto složitých jevů není jednoduchou záležitostí . Nejlepší místo, kde začít studovat zrak je na oku samotném.

Fig. 7-1. A section through the human eye illustrating the major structures. (Walls GL: The Vertebrate Eye and its Adaptive Radiations. New York, Hafner, 1967)

Obrázek 7-1 znázorňuje příčný řez lidským okem. Skládá se ze dvou komor vyplněných tekutinou oddělených transparentní strukturou, čočkou. Téměř celé oko je pokryto tuhým, vláknitým povlakem zvaným skléra, který je vpředu upraven pro vytvoření transparentní rohovky. Lidská rohovka má asi 12 mm průměr, o tloušťce přibližně 0,5 mm ve středu a 0,75 až 1 mm tlusté na okraji, a je vyrobena ze stejné kolagenní pojivové tkáně, jako je skléra, ale vlákna rohovky jsou orientována v paralelním seskupení, které umožňuje světlu průchod s minimálním rozptylem, zatímco vlákna bělma jsou seřazena náhodně a světelné paprsky jsou při průniku rozptýleny. Výsledkem je, že světlo přes rohovku prochází snadno, na rozdíl od  skléry. Vnitřek skléry v zadních dvou třetinách ohraničují dvě membrány: cévnatky, pigmentová vrstva obsahující cévní zásobení pro oční bulvy, jakož i mechanismus pro udržení integrity fotoreceptorů, a sítnice, která obsahuje fotoreceptory a další nervové elementy nezbytné pro náš vizuální proces. Jemnou strukturou sítnice se budeme zaobírat podrobně později.

Lidská čočka je asi 11 mm široká v průměru, 3,5 mm silná ve svém nejširším místě a je zavěšena na místě zonuly, štíhlými vlákny které se připojují k předku sítnice. Sada hladkých svalových vláken, ciliární sval, leží mezi ciliárním výrůstkem a bělmem. Těsně před čočkou je pigmentová struktura zvaná duhovka, která je stejně jako membrána na některých fotoaparátech v tom, že má díru v centru s variabilitou průměru, zornice. Zornice je obklopena dvěma sadami svalů, ten, který se točí kolem otvoru, svěrač zornice, a ten, který běží radiálně z ní, dilatátor zornice.

Přední komora oka je vyplněna komorovou vodou, vodnatou kapalinou s nízkým obsahem bílkovin, která je vytvořena z plazmy. Sklivec obsahuje rosolovitou látku, sklivec a komorový sklivec. U mnoha lidí sklivec není zcela jasný, ale obsahuje částice, které nejsou průhledné. Tento materiál může být statický, nebo se může pohybovat, produkujíce „skvrny před očima,“ plovoucí druh se nazývá „floaters“.

Celý článek naleznete zde.

REPORT ČTVRTÉHO SJEZDU RADY PRO VĚDU A VEŘEJNÉ ZDRAVÍ

Světelné znečištění: Nepříznivé účinky nočního osvětlení na zdraví

David Blask, PhD, MD (Tulane University School of Medicine); George Brainard, PhD (Jefferson Medical College); Ronald Gibbons, PhD (Virginia Tech); Steven Lockley, PhD (Brigham and Women’s Hospital, Harvard Medical School); Richard Stevens, PhD (University Connecticut Health Center); and Mario Motta, MD (CSAPH, Tufts Medical School).

SHRNUTÍ

Cíl.
Posoudit vliv umělého osvětlení na lidské zdraví, primárně skrze narušení cirkadiánních biologických rytmů, či spánku, stejně tak vliv světlometů, nočních režimů svícení a oslnění na bezpečnost řízení. Obavy spojené s cenami energií, vliv na zvěř a rostlinstvo, i otázky estetiky jsou lehce nastíněny.

Metody.
Byly vybrány anglicky psané zprávy zabývající se lidmi z PubMed vyhledávače literatury od 1995 do Března 2012 za užití MeSH termínů „cirkadiánní/biologické hodiny/rytmy“,“chronobiology/porucha“,“fotoperioda“,“světlo/svícení“,“spánek“,“pracovní rozvrh“, nebo „adaptace“,kombinované s pojmy „fysiologie“,“melatonin“,“nepříznivé vlivy/toxicita“,“pathofysiologie“,“neoplasm“,“epidemiologie/etiologie“,“duševní poruchy“,“energie metabolismu“ a „genová exprese“. Další články byly identifikovány manuální kontrolou referencí citovaných v těchto publikacích; další byly dodány experty v oboru, kteří přispěli k této zprávě (viz. poděkování)

Výsledky.
Biologická adaptace na slunce se vyvíjela po miliony let. Možnost uměle potlačit přirozený cyklus světla a tmy je nedávná událost a představuje člověkem vyvinutý self-experiment vlivu vystavení se narůstající intenzitě světla v průběhu noci jak lidská společnost získala technologie a expanzi průmyslu. Kromě resetování cirkadiánního budiče, světlo také stimuluje další neuroendokrinní a neurobehaviorální reakce, včetně potlačení vylučování melatoninu z šišinky, čímž dochází ke zlepšení pozornosti a výkonu. Nízká hladina osvětlení v modrém, či bílém fluorescentním spektru narušuje sekreci melatoninu. Prvotní lidská obava spojená s nočním svícením zahrnuje oslnění (které ovlivňuje řízení a bezpečnost chodců) a několik zdravotních rizik. Mezi ty dlouhodobější patří potenciální karcinogenní účinky spojené s potlačováním melatoninu, zvláště pak rakovina prsu. Dalšími nemocemi,které mohou být zhoršeny narušením cirkadiánních rytmů jsou obezita, diabetes, deprese a náladovost a reprodukční problémy.

Závěr.
Přirozený 24 hodinový cyklus světla a tmy napomáhá dosažení precizního vyrovnání cirkadiánních biologických rytmů, hlavní aktivaci centrálního nervového systému a různých biologických buněčných procesů, a strhávání uvolňování melatoninu z šišinky. Pronikající užívání nočního osvětlení narušuje tyto endogenní procesy a vytváří potenciálně zdraví škodlivé efekty a/nebo nebezpečné situace s různými stupni škodlivosti. Započítává se i vytváření záře u silnic,pozemků a dalších umělých zdrojů světla, které mohou vytvořit nebezpečné jízdní podmínky, speciálně pro starší řidiče. Více přímých zdravotních efektů nočního svícení mohou připadat na vrub narušení spánkového-vstávajícího cyklu a potlačení uvolňování melatoninu. Dokonce i nízká intensita nočního světla má schopnost potlačení vyplavování melatoninu. V několika laboratorních testech s rakovinou, melatonin sloužil jako oběžný protirakovinový signál a potlačoval růst tumoru. Pár epidemiologických studií podporují hypotézu, že noční svícení a/nebo repetitivní narušování cirkadiánního rytmu zvyšuje risk rakoviny; nejvíce pozornosti v této oblasti bylo věnováno rakovině prsu. Další informace jsou zapotřebí pro ověření vztahovou roli spánku vůči období tmy u určitých onemocnění, nebo nosičích na mediátorech určitých chronických onemocnění, nebo stavech včetně obezity. Díky všudypřítomnému vystavení světlu v nevhodných časech ve vztahu s endogenními cirkadiánními rytmy, existuje potřeba pro multidisiplinární výzkum týkající se pracovní veřejného vystavení světlu v noci, risk rakoviny a efekt na různé chronické onemocnění.

Action of the AMA House of Delegates 2012 Annual Meeting: Council on Science and Public Health Report 4 Recommendations Adopted as Amended, and Remainder of Report filed.

REPORT OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH CSAPH Report

INTRODUCTION

Current AMA Policy H-135.937 (AMA Policy Database) advocates for light pollution control and reduced glare from (electric) artifical light sources to both protect public safety and conserve energy. Lighting the night has become a necessity in many areas of the world to enhance commerce, promote social activity, and enhance public safety. However, an emerging consensus has come to acknowledge the effects of widespread nighttime artificial lighting, including the: 1) impact of artificial lighting on human health, primarily through disruption of circadian biological rhythms or sleep; 2) intersection of ocular physiology, vehicle headlamps, nighttime lighting schemes, and harmful glare; 3) energy cost of wasted and unnecessary electric light; and 4) impact of novel light at night on wildlife and vegetation. In addition to these health and environmental effects, an esthetic deficit is apparent with the progressive loss of the starry night sky and interference with astronomical observations. With the assistance of experts in the field, this report evaluates the effects of pervasive nighttime lighting on human health and performance. Concerns related to energy cost, effects on wildlife and vegetation, and esthetics are also briefly noted.

METHODS

English-language reports in humans were selected from a PubMed search of the literature from 1995 to March 2012 using the MeSH terms “circadian/biological clocks/rhythm,” “chronobiology/disorders,” “photoperiod,” “light/lighting” “sleep,” “work schedule,” or “adaptation,” combined with the terms “physiology,” “melatonin,” “adverse effects/toxicity,” “pathophysiology,” “neoplasm,” “epidemiology/etiology,” “mental disorders,” “energy metabolism,” and “gene expression.” Additional articles were identified by manual review of the references cited in these publications; others were supplied by experts in the field who contributed to this report (see Acknowledgement).

LIGHT AND HUMAN PHYSIOLOGY

The solar cycle of light and dark provides the essential basis for life on Earth. Adaptation to the solar cycle has resulted in fundamental molecular and genetic endogenous processes in virtually all life forms that are aligned with an approximately 24-hour period (circadian biological rhythm). The circadian genetic clock mechanism is intimately involved in many, if not most, facets of cellular and organismal function.1 Although the circadian system spontaneously generates near-24- hour rhythms, this master clock must be reset daily by the light-dark cycle to maintain proper temporal alignment with the environment. In humans and other mammals, this daily entrainment is achieved primarily by novel photoreceptors that project directly to the site of the circadian clock (suprachiasmatic nuclei (SCN) of the hypothalamus). 2-5 The tandem development of an endogenous rhythm sensitive to light presumably evolved to allow for precise 24-hour regulation of rest and activity, and for adapting to seasonal changes in night-length, while maintaining the advantages of an underlying physiology that anticipates day and night. Understanding the molecular and physiological basis of endogenous rhythms, how light information is communicated, and the health implications of disruptions to this system are topics of intensive study.

ELECTRIC LIGHTING AND HUMAN HEALTH

Biological adaptation to the sun has evolved over billions of years. The power to artificially override the natural cycle of light and dark is a recent event and represents a man-made self- experiment on the effects of exposure to increasingly bright light during the night as human societies acquire technology and expand industry. At the same time, increasing numbers of people work inside buildings under electric lighting both night and day. Artificial lighting is substantially dimmer than sunlight and provides a very different spectral irradiance. Sunlight is strong at all visible wavelengths, peaking in the yellow region, whereas electric lighting has either extreme characteristic wavelength peaks (fluorescent) or exhibits a monotonic increase in irradiance as wavelength lengthens (incandescent). In contrast to outdoor lighting conditions, much of the modern world now lives and works in relatively dim light throughout the day in isolation from the sun, with often poor contrast between night and day, even for those who live and work in sunny environments.6

Extensive nighttime lighting is required for contemporary society and commerce. Therefore, it is imperative to evaluate the unintended adverse health consequences of electric lighting practices in the human environment, and determine their physiological bases so that effective interventions can be developed to mitigate harmful effects of suboptimal light exposure. For example, engineers have already developed less disruptive night lighting technologies, and continued progress in this area is anticipated. That such technologies exist, however, does not guarantee that they will be purchased, installed and properly implemented. The medical community and public can take the lead on advocating a healthier environment, as illustrated by recent changes in public smoking policies worldwide. As the research on the biology of circadian rhythms has advanced, the range of potential disease connections due to disrupted circadian rhythms and sleep has expanded.

Biological Impact of Light on Human Physiology

Light is the most powerful stimulus for regulating human circadian rhythms and is the major environmental time cue for synchronizing the circadian clock. In addition to resetting the circadian pacemaker, light also stimulates additional neuroendocrine and neurobehavioral responses, including suppression of melatonin release from the pineal gland, directly alerting the brain, and improving alertness and performance. 7-9 Melatonin is one of the most studied biomarkers of the human physiological response to light.10 This substance is the biochemical correlate of darkness and is only produced at night, regardless of whether an organism is day-active (diurnal) or night-active (nocturnal). Conceptually, melatonin provides an internal representation of the environmental photoperiod, specifically night-length. The synthesis and timing of melatonin production requires an afferent signal from the SCN. Ablation of this pathway, which occurs in some patients from upper cervical spinal damage, completely abolishes melatonin production. Certain other circadian rhythms (e.g., cortisol, body temperature, sleep-wake cycles) do not depend on this pathway and persist if the SCN pathway is damaged. Light is not required to generate circadian rhythms or pineal melatonin production. In the absence of a light-dark cycle (e.g., totally blind individuals), the circadian pacemaker generates rhythms close to, but not exactly a 24-hour periodicity, reflecting the timing of processes under SCN control.2 However, as previously noted, the timing of SCN rhythms and consequently the rhythms controlled by the circadian clock are affected by light, and require daily exposure to the light-dark cycle to be synchronized with the 24-hour day. When light information fails to reach the SCN to synchronize the clock and its outputs, the pacemaker reverts to its endogenous non-24-hour period (range 23.7-25.0 h). Consequently, the timing of physiology and behavior that is controlled by the circadian system, for example the sleep-wake cycle, alertness and performance patterns, the core body temperature rhythm, and melatonin and cortisol production, becomes desynchronized from the 24-hour day.2 The resultant clinical disorder is termed “non-24-hour sleep-wake disorder” and is characterized by alternating episodes of restful sleep, followed by poor night-time sleep and excessive day-time napping, as the non-24- hour circadian pacemaker cycles in and out of phase with the 24-hour social day.11 Another effect of light exposure at night is the immediate suppression of melatonin production. Under natural conditions, organisms would never be exposed to light during the night in substantial amounts and would not experience melatonin suppression. Electric light, however, efficiently suppresses melatonin at intensities commonly experienced in the home at night.12

Measures of Illumination

Luminous flux is the measure of the perceived power of light. The lumen is the standard international unit of luminous flux, a measure of the total “amount” of visible light emitted by a source, while illumination is a measure of how much luminous flux is spread over a given area (intensity of illumination). One lux is equal to one lumen/m2. Luminous flux measurements take into account the fact that the human eye and visual system is more sensitive to some wavelengths than others. The peak luminosity function is in the green spectral region; white light sources produce far fewer lumens. To provide some perspective, the illuminance associated with a full moon is less than 1 lux, versus 50 lux for a typically incandescent lit family room, 80 lux in a narrower hallway, 325-500 lux for office lighting, 1,000 lux for an overcast day, and 32,000-130,000 lux for direct sunlight. Initially it was thought that bright light of at least 2,500-20,000 lux was needed to suppress nighttime melatonin secretion or phase shift the melatonin rhythm (as in jet lag) in humans. 13-15 It is now established that when exposure of the human eye is carefully controlled, illuminance as low as 5−17 lux of monochromatic green light or 100 lux of broadband white light can significantly suppress melatonin in normal human volunteers. 12,16-18 Similarly, circadian phase shifts of the melatonin rhythm can be evoked with an illuminance of 5 lux of monochromatic blue light or

Ocular Physiology Mediating Photic Effects

Factors that alter the amount and spectral quality of light reaching the retina include gaze behavior relative to a light source, age (of the ocular lens), and pupillary dilation. Once a light stimulus reaches the retina, physiology within the retina and within the nervous system determines the capacity of the stimulus to evoke circadian, neuroendocrine or neurobehavioral responses. This physiology includes: 1) the sensitivity of the operative photopigments and photoreceptors; 2) location of these photoreceptors within the retina; 3) the ability of the nervous system to integrate photic stimuli spatially and temporally; and, 4) the state of photoreceptor adaptation. In particular, both short and long-term photoreceptor adaptation can significantly modify the biological and behavioral responses to light and acutely suppress melatonin in humans.22 For example, a full week of daytime exposure to bright light (by daylight and/or indoor light boxes at ~ 5,000 lux) or a three-day period of exposure to moderate indoor lighting (200 lux) reduces an individual’s sensitivity to light suppression of nighttime melatonin compared with exposure to dim indoor lighting (0.5 lux); similar dim light conditions also enhance circadian phase shifting.23-25

Two hours of exposure to 18 lux of white incandescent light versus full dark exposure in a single evening modifies the sensitivity of an individual for light-induced melatonin suppression later that same night.26 Hence, photoreceptor adaptation, like the other ocular and neural elements noted above, can significantly modify the biological and behavioral responses to light. 16

In general, photobiological responses to light are not all-or-none phenomena. In the case of acutely suppressing high nighttime levels of melatonin or phase-shifting the entire melatonin rhythm, light works in a dose-response fashion. Once threshold is exceeded, increasing irradiances of light elicit increasing acute plasma melatonin suppression or longer-term phase-shifts of the melatonin rhythm in healthy individuals. 16,18,27 All humans, however, are not equally sensitive to light; significant individual differences exist in sensitivity to light for both neuroendocrine and circadian regulation.16,18 For a detailed description of the molecular and cellular basis for how photoreceptive input regulates circadian and neuroendocrine system function, see the Addendum.

HUMAN CONCERNS-DISABILITY AND DISCOMFORT GLARE

Glare from nighttime lighting can create hazards ranging from discomfort to frank visual disability. Disability glare has been fairly well-defined based on the physiology of the human eye and behavior of light as it enters the ocular media. Discomfort glare is less well-defined and more subjective as it is not based on a physical response per se but rather a psychological response. Accordingly, the respective bases of (and research into) these two responses are fundamentally different.

Disability Glare

Disability glare is unwanted and poorly directed light that temporarily blinds, causes poor vision by decreasing contrast, and creates an unsafe viewing condition, especially at night, by limiting the ability of the person to see. There are natural causes of disability glare, such as solar glare at sunset on a dirty windshield which can be lessened by cleaning the windshield. Unfortunately, nighttime glare while driving is not easily remedied. It is caused by the misapplication of luminaires that comprise the lighting design which are generally overly bright and unshielded, and/or sources of poorly directed light that enters the eye and scatters among ocular structures resulting in diminished contrast and impeded vision. Such effects dramatically worsen as the human eye ages, contributing to poor night vision and difficulty in driving at night for older drivers. Disability glare is caused by light scatter from ocular media.28 As light enters the eye, it collides with cornea, lens, and vitreous humor, scattering photons and casting a veil of light across the retina29-31 (see Figure 1). The veil of light reduces the contrast of the object that the driver is trying to see, having the same effect as increasing the background luminance of the object. This veiling light is represented by the term veiling luminance. Veiling luminance is directly related to the illuminance of the light source and inversely related to the square of the angle of eccentricity of the light source with an age dependent multiplier across the entire equation.28 This means that the disability from a light source is lessened the farther the source is from the line of sight.α α As an example, high mast lighting systems where the roadway lighting is over 100 feet in the air have significantly less glare than traditional systems, which are typically located 30−50 feet in the air. Because of Accordingly, proper design techniques and consideration for the glare caused by lighting systems need to be considered. One of the primary difficulties, especially for roadways, is that the lighting is not governed by a single jurisdiction. Roadway lighting may be designed properly and provide a low level of glare; however lighting can emanate from adjacent properties, spilling out into the roadway thus affecting the driver and overall performance and suitability of a lighting system. Control over all environmental sources of nighttime lighting is therefore critical for the overall control of disability glare.

Discomfort Glare

Discomfort glare is less well defined but emanates from a glare source that causes the observer to feel uncomfortable. The definition of discomfort is not precise, and some research has shown that a person’s response to a glare source is based more on his/her emotional state than on the light source itself. Discomfort glare may be based primarily on the observer’s light adaptation level, the size, number, luminance and location of the light sources in the scene. 32

Both overhead roadway lighting and opposing headlamps are involved with discomfort glare in the driver. A numerical rating scale based on the dynamic nature of glare in simulations is available to measure the discomfort level experienced by drivers (Appendix). 33 The overall impact of discomfort glare on fatigue and driver safety remains an issue.

Lighting and Glare. Both discomfort and disability glare have specific impacts on the user in the nighttime environment. Research has shown that both of these glare effects occur simultaneously. Research also shows that the effects of the glare are cumulative, meaning that the glare from two light sources is the sum of the glare from the individual light sources. As a result, every light source within the field of view has an impact on the comfort and visual capability of the driver.

Overhead lighting

For overhead roadway lighting, design standards include a methodology for controlling the disability glare through a ratio of the eye adaptation luminance to the veiling luminance caused by the light source. As the veiling luminance is related to the illuminance the light source produces at the eye, a roadway luminaire that directs light horizontally has a much greater effect on the driver than a light source that cuts off the horizontal light. A trend towards flat glass luminaires, which provide a cut off of light at horizontal angles, provides a lower level of both disability and discomfort glare.

Decorative luminaires (e.g., acorn or drop lens) have a high level of horizontal light and typically are used in areas where pedestrians are the primary roadway users. The horizontal light in this situation is useful for facial recognition of a pedestrian, but it limits the driver’s ability to perceive other objects in the roadway. As a result, many cities are designing and installing two lighting systems, one for the pedestrian and one for the roadway. Luminaires employing solid state technologies and light-emitting diodes (LED) provide light from an array of small sources rather than a single large source. These designs either rely on each small source to provide a component of the light distribution, or the components of the lighting array provide individual luminating fields of the light distribution. In the first instance, the arrays are the inverse squared relationship, a high mast system reduces glare by 75% compared with a traditional system. typically flat and have an optic to provide the light distribution; if a single LED fails, the others still provide the light distribution. In the second method, the components of the array are aimed to different areas of the beam distribution. This approach typically results in light aimed at the driver and pedestrians causing a higher glare impact. The other issue with the multiple sources used in LED luminaires is that each of the sources typically has a very high luminance itself as the source is very small and very bright; in the absence of sufficient diffusion, they cause significant glare. Accordingly, solid state lighting systems typically have a higher glare impact than traditional sources.

The final issue with glare from overhead lighting is the cyclic nature of the impact. As drivers course along a roadway, they pass from one luminaire to another. The glare experience increases as they approach the luminaire and then diminishes as they pass beyond. While typically not an issue for disability glare, this repetitive process can cause discomfort and fatigue. 34

Opposing vehicle headlamps

Vehicle headlamps are aimed at the opposing driver eye level resulting in very high ocular illuminance and significant disability glare. The impact of opposing headlamps on the ability of the oncoming driver to observe beyond the headlamps is significant. For example, the visibility of a pedestrian standing behind a vehicle can be reduced by as much as 50%. 35

In order to minimize the glare impact, headlamps are designed with lower left side light intensity than the right side. This reduces the glare to an opposing vehicle but does not eliminate it. New technologies such as turning headlamps and headlamps that hide part of the headlamp beam when a vehicle passes are possible solutions for this issue. With the advent of high intensity discharge Xenon headlamps and LED-based technologies, the glare issue has become more serious. While the intensity towards a driver is limited, the small but brighter source generates a much higher impression of glare than traditional technologies. These “blue” headlamp sources have a higher complaint rate for glare than for any other light source.

Effects of Lighting Design on Traffic Accidents

Adult, and especially elderly drivers, experience increased glare sensitivity, and elderly drivers may not be able to sufficiently fulfill the criteria for night driving ability because of contrast and glare sensitivity.

Prospective studies indicate that reduction in the useful field of view, visual field loss, and glare sensitivity increase crash risk in older drivers.37,38 Crash risk begins to increase around age 50 years of age and continues to increase with aging. 39 No studies have explicitly compared traffic accident rates under different highway lighting conditions.

HEALTH EFFECTS OF DISRUPTED CIRCADIAN RHYTHMS

Epidemiological studies are a critical component of the evidence base required to assess whether or not light exposure at night affects disease risk, including cancer. These studies, however, are necessarily observational and can rarely provide mechanistic understanding of the associations observed. Carefully designed and controlled basic laboratory studies in experimental animal models have the potential to provide the empiric support for a causal nexus between light exposure at night and biological/health effects and to help establish plausible mechanisms. One area of considerable study on the possible effects of nighttime light exposure involves cancer.

CANCER

Light at Night, Melatonin and Circadian Influences on Carcinogenesis Experimental Evidence. The majority of earlier studies in experimental models of either spontaneous or chemically-induced mammary carcinogenesis in mice and rats demonstrated an accelerated onset of mammary tumor development accompanied by increased tumor incidence and number in animals exposed to constant bright fluorescent light during the night as compared with control animals maintained on a strict 12 hours light/12 hours dark cycle. 40-51

More recent work has focused on the ability of light at night to promote the growth progression and metabolism in human breast cancer xenografts. Nocturnal melatonin suppresses the growth of both estrogen receptor negative (ER-) and estrogen receptor positive (ER+) human breast cancer xenografts; the essential polyunsaturated fatty acid, linoleic acid is necessary for the growth of such (ER-) tumors, and its metabolism can be used as a biomarker of cellular growth. 52-55 Exposure of rats with such cancer xenografts to increasing intensities of white, fluorescent polychromatic light during the 12 hour dark phase of each daily cycle results in a dose-dependent suppression of peak nocturnal serum melatonin levels and a corresponding marked increase in tumor metabolism of linoleic acid and the rate of tumor growth. Exposure to even the very dimmest intensity of light during the night (0.2 lux) suppressed the nocturnal peak of circulating melatonin by 65% and was associated with marked stimulation in the rates of tumor growth and linoleic acid metabolic activity. In this model, measurable effects on xenograft growth and linoleic acid metabolism were apparent with 15% suppression in nocturnal melatonin levels.

The ability of light exposure at night to stimulate tumor growth (including dim exposures) has been replicated in rat hepatoma models. 54,56-58 The reverse also is true; gradually restoring circulating melatonin by reducing initial exposure to light at night (24.5 lux) is accompanied by a marked reduction in tumor growth and linoleic acid metabolic activity to baseline rates in the breast cancer and hepatoma models. 59

The important role of melatonin as a nocturnal anticancer signal is further supported by the growth responses of human breast cancer xenografts perfused with human whole blood collected from young, healthy premenopausal female subjects exposed to complete darkness at night (e.g., high melatonin), compared with xenografts that were perfused with blood collected from the same subjects during the daytime (e.g., low melatonin).54 The growth of xenografts perfused with blood collected during the dark was markedly reduced. Addition of a physiological nocturnal concentration of melatonin to blood collected from light-treated subjects restored the tumor inhibitory activity to a level comparable to that observed in the melatonin-rich blood collected at night during total darkness. Moreover, the addition of a melatonin receptor antagonist to the blood collected during darkness (i.e., high melatonin) eliminated the ability of the blood to inhibit the growth and metabolic activity of perfused tumors. Some evidence also exists that circadian disruption by chronic phase advancement (e.g., simulating jet lag) may increase cancer growth in laboratory animals. 60,61 Potential Anticancer Mechanisms of Melatonin

The preponderance of experimental evidence supports the hypothesis that under the conditions of complete darkness, high circulating levels of melatonin during the night not only provide a potent circadian anticancer signal to established cancer cells but help protect normal cells from the initiation of the carcinogenic process in the first place.62,63 It has been postulated that disruption in the phasing/timing of the central circadian pacemaker in the SCN, in general, and the suppression of circadian nocturnal production of melatonin, in particular, by light at night, may be an important biological explanation for the observed epidemiological associations of cancer risk and surrogates for nocturnal light exposure (such as night shift work, blindness, reported hours of sleep, etc.) (see below).64

Melatonin exerts several cellular effects that may be relevant in this regard. It exhibits antiproliferative and antioxidant properties, modulates both cellular and humoral responses, and regulates epigenetic responses.65-67 Melatonin also may play a role in cancer cell apoptosis and in inhibiting tumor angiogenesis.68,69

Human Studies

While the experimental evidence from rodent cancer models links disruption of circadian rhythms and circulating melatonin concentrations (inversely) with progression of disease, the human evidence is indirect and based on epidemiological studies. Breast cancer has received the most study.

The hypothesis that the increasing use of electricity to light the night might be related to the high breast cancer risk in the industrialized world, and the increasing incidence and mortality in the developing world was first articulated in 1987.70 Potential pathways include suppression of the normal nocturnal rise in circulating melatonin and circadian gene function. 54,71,72 Conceptually, this theory would predict that non-day shift work would raise risk, blind women would be at lower risk, reported sleep duration (as a surrogate for hours of dark) would be inversely associated with risk, and population nighttime light level would co-distribute with breast cancer incidence worldwide.72,73 Only the first hypothesis has been systematically evaluated. Based on studies of non-day shift occupation and cancer (mostly breast cancer) published through 2007, the International Agency for Research on Cancer (IARC) concluded “shift-work that involves circadian disruption is probably carcinogenic to humans” (Recommendation Level 2A).74 A detailed review of the individual studies supporting this conclusion is available.75

Since the IARC evaluation was conducted, several new studies of breast cancer and nighttime light have been published with mixed results.76-79 Two found no significant association between shift work and risk of breast cancer.76,77 A large case-control study of nurses in Norway78 found a significantly elevated risk in subjects with a history of regularly working five or more consecutive nights between days off, and another found that as the type of shift (e.g., evening, night, rotating) became more disruptive, the risk increased.79,80 In the Nurses Health Study cohort, increased urinary excretion of melatonin metabolites also was associated with a lower risk of breast cancer.81

Each of these studies has strengths and limitations common to epidemiology, particularly in exposure assessment and appropriate comparison groups (e.g., no woman in the modern world is unexposed to light-at-night, but quantifying that exposure is difficult). Although shiftwork represents the most extreme example of exposure to light at night and circadian disruption, perturbation of circadian rhythms and the melatonin signal is also experienced by nonshift workers with a normal sleep/wake-cycle.12 Anyone exposing themselves to light after dusk or before dawn is overriding the natural light-dark exposure pattern as noted in the earlier discussion on measures of illumination.

After lights out for bedtime, it is not yet clear whether the ambient background light from weak sources in the bedroom or outside light coming through the window could influence the circadian system; a brief exposure at these levels may not have a detectable impact in a laboratory setting, although long-term chronic exposure might. Four case-control studies have now reported an association of some aspect of nighttime light level in the bedroom with breast cancer risk. 82-85 The elevated risk estimate was statistically significant in two of them.83,85 As case-control designs, in addition to the limitation of recall error, there is also the potentially significant limitation of recall bias.

Despite the difficulty of gathering reliable information on bedroom light level at night, the possibility that even a very low luminance over a long period of time might have an impact is important. The lower limit of light intensity that could, over a long time period, affect the circadian system is not established. In the modern world few people sleep in total darkness. When eyelids are shut during sleep, only very bright light can penetrate to lower melatonin and only in some individuals. 86 Frequent awakenings with low level light exposure in the bedroom and certain nighttime activities (e.g., bathroom visits) may disrupt the circadian system, but any related health effects are unknown.87

Other Cancers

Light-at-night and circadian disruptions have been suggested to play a role in other cancers including endometrial, ovarian, prostate, colorectal, and non-Hodgkins lymphoma but evidence comparable to that obtained for breast cancer has not yet been developed.88 On the other hand, engaging in night shift work may protect against skin cancer and cutaneous melanoma.89

Other Diseases

Obesity, Diabetes, and Metabolic Syndrome. The modern world has an epidemic of obesity and diabetes that may be influenced by lack of sleep, lack of dark, and/or circadian disruption.90 Nonday shift workers have a higher incidence of diabetes and obesity.91 Epidemiological studies also show associations of reported sleep duration and risk of obesity and diabetes.92 Circadian disruption may be a common mechanism for these outcomes and potential links between the circadian rhythm and metabolism. 93-95

Other Disorders. Although in the early stage of development, emerging evidence suggests that other chronic conditions also may be exacerbated by light at night exposure and ongoing disruption of circadian rhythms, including depression and mood disorders, gastrointestinal and digestive problems, and reproductive functions.88

DARK VERSUS SLEEP

The circadian rhythm and sleep are intimately related but not the same thing. Adequate daily sleep is required for maintenance of cognitive function and for a vast array of other capabilities that are only partially understood. Sleep is not required to synchronize the endogenous circadian rhythm, whereas a stable 24-hour light-dark cycle is required. The epidemiological and laboratory research on sleep and health cannot entirely separate effects of sleep duration from duration of exposure to dark, because the sleep-wake cycle partitions light-dark exposure to the SCN and pineal gland. 96

The distinction is important because a requirement for a daily and lengthy period of dark to maintain optimal circadian health has different implications than a requirement that one must be asleep during this entire period of dark; many individuals normally experience a wakeful episode in the middle of a dark night.87

Light during the night will disrupt circadian function as well as sleep, and the health consequences of short sleep and of chronic circadian disruption are being intensively investigated. 97 A growing number of observational and clinical studies on sleep and metabolism suggest short sleep periods have substantial harmful effects on health; however, it is not yet clear that sleep and dark have been entirely disentangled in these studies.97,98 For example, in one study, sleep duration (verified by polysomnography) was associated with morning blood levels of leptin, a hormone that plays a key role in energy expenditure and appetite. 99 However, the duration of typical sleep reported by each subject was more strongly associated with leptin concentrations. Mean verified sleep was 6.2 hours, whereas mean reported sleep was 7.2 hours. Reported “sleep duration” probably reflects the time from when a person turns out their light for bed and falls asleep and when they get up in the morning (i.e., actual hours of dark exposure). An important question is to determine what portion of the health effects of dark disruption is due to sleep disruption and what portion is due directly to circadian impact of electric light intrusion on the dark of night.

Media use at night (i.e., televisions, computer monitors, cell phone screens) negatively affects the sleep patterns of children and adolescents and suppresses melatonin concentrations. 100-102 The American Academy of Pediatrics recommends removing televisions and computers from bedrooms to assist in limiting total “screen time” on a daily basis. 101 This action also may help in improving sleep patterns.

ENERGY COST

Electric lighting accounts for about 19% of electricity consumption worldwide and costs about $360 billion.103 Much of the light that is produced is wasted, for example, by radiating light into space away from the task or environment intended to be illuminated. Estimates of how much is wasted vary; one estimate from the International Dark-Sky Association is 30% in the United States.104 Such a percentage worldwide would account for an annual cost of about $100 billion.

ENVIRONMENTAL ISSUES

Although not directly under the purview of human health and disease, the following considerations are indirectly related to human well-being.

Esthetics

The Milky Way is no longer visible to the majority of people in the modern world. As societies have increasingly used electricity to light the night, it has become difficult to see more than a few of the innumerable stars from Earth’s surface.105 This has been carefully documented in a cover story by National Geographic Magazine in November 2008, which includes extensive visual documentation on its website.106 Though the major impact of electric light at night is in major metropolitan areas, even the once pristine nights of the U.S. National Parks are beginning to be degraded, more rapidly in the East but also in parks in the West as well.107

Impact on Wildlife

Life on the planet has evolved to accommodate the 24-hour solar cycle of light and dark. Human imposition of light at night and disruption of the natural dark-light cycle represents a dramatic change to the environment. 108 Study of the effects of light at night on animal and plant life is in the early stages, but the entire spectrum of life, including animal, plant, insect, and aquatic species, may be affected.

About 30% of all vertebrate species and 60% of invertebrate species on Earth are nocturnal and depend on dark for foraging and mating.108 Documented wildlife destruction by light at night has been evident in bird species, which fly into lit buildings at night in enormous numbers when migrating, and in the disruption of migration and breeding cycles in amphibians. 108-111 The most studied case in reptiles involves sea turtle hatchlings on the coast of Florida, which historically have scurried from their nest directly to the ocean. With increased development along the coast, and attendant increased electric lighting at night, these hatchlings become confused and often migrate away from shore to the lights. Hundreds of thousands of hatchlings are believed to have been lost as a result of this stray electric lighting at night in Florida. 109 Furthermore, many billions of insects are lost to electric light annually, which reduces food availability for other species in addition to unnecessarily reducing living biomass. It is concerning that light at night also may be vector attractant for diseases such as malaria. 112

The circadian biology of plants is as robust as animals, and the impact of light at night on plant life may also be considerable due to the role of light in photosynthesis and the fact that many plants are pollinated at night.113,114

POLICY AND PUBLIC HEALTH IMPLICATIONS OF LIGHT AT NIGHT

Some responses to public health concerns associated with light-at-night exposures are readily apparent, such as developing and implementing technologies to reduce glare from vehicle headlamps and roadway lighting schemes, and developing lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. Additionally, clinical studies support efforts to reduce child and adolescent night-time exposure from exogenous light derived from various media sources, especially in the bedroom environment. Recommendations to use dim lighting in residences at night raise issues for elderly patients. The American Geriatrics Society recommends ensuring well lit pathways within households to reduce the incidence of falls in elderly patients.115

Individuals who are subject to shift work experience disrupted circadian rhythms, fatigue, and cognitive dysfunction. Many industries, including hospitals, require a 24-hour workforce. The American College of Occupational and Environmental Medicine has established guidelines to address fatigue risk management in the workplace.116 In healthcare workers, such as nurses who experience rapidly rotating shifts, brief morning light exposure improves subjective symptoms and performance.117 The judicious use of bright light and/or melatonin supplements can improve adaptation to permanent, long-term night work.118

SUMMARY AND CONCLUSIONS

The natural 24-hour cycle of light and dark helps maintain precise alignment of circadian biological rhythms, the general activation of the central nervous system and various biological and cellular processes, and entrainment of melatonin release from the pineal gland. Pervasive use of nighttime lighting disrupts these endogenous processes and creates potentially harmful health effects and/or hazardous situations with varying degrees of harm. The latter includes the generation of glare from roadway, property, and other artificial lighting sources that can create unsafe driving conditions, especially for older drivers. Current AMA policy advocates that all future outdoor lighting be of energy efficient designs to reduce energy use and waste. Future streetlights should incorporate fully shielded or similar non-glare design to improve the safety of our roadways for all, but especially vision impaired and older drivers.

More direct health effects of nighttime lighting may be attributable to disruption of the sleep-wake 5 cycle and suppression of melatonin release. Even low intensity nighttime light has the capability of suppressing melatonin release. In various laboratory models of cancer, melatonin serves as a circulating anticancer signal and suppresses tumor growth. Limited epidemiological studies support the hypothesis that nighttime lighting and/or repetitive disruption of circadian rhythms increases cancer risk; most attention in this arena has been devoted to breast cancer. The quality and duration of sleep and/or period of darkness affect many biological processes that are currently under investigation. Further information is required to evaluate the relative role of sleep versus the period of darkness in certain diseases or on mediators of certain chronic diseases or conditions including obesity. Due to the nearly ubiquitous exposure to light at inappropriate times relative to endogenous circadian rhythms, a need exists for further multidisciplinary research on occupational and environmental exposure to light-at-night, the risk of cancer, and exacerbation of chronic diseases.

RECOMMENDATIONS

The Council on Science and Public Health recommends that the following statements be adopted and the remainder of the report be filed:

That our American Medical Association:

1. Supports the need for developing and implementing technologies to reduce glare from vehicle headlamps and roadway lighting schemes, and developing lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency. (New HOD Policy)

2. Recognizes that exposure to excessive light at night, including extended use of various electronic media, can disrupt sleep or exacerbate sleep disorders, especially in children and adolescents. This effect can be minimized by using dim red lighting in the nighttime bedroom environment. (New HOD Policy)

3. Supports the need for further multidisciplinary research on the risks and benefits of occupational and environmental exposure to light-at-night. (New HOD Policy)

4. That work environments operating in a 24/7 hour fashion have an employee fatigue risk management plan in place. (New HOD Policy)

5. That Policy H-135.937 be reaffirmed. (Reaffirm HOD Policy) Fiscal Note: Less than $500 Acknowledgements The Council gratefully acknowledges the following national experts who contributed to the content and development of this report: David Blask, PhD, MD (Tulane University School of Medicine); George Brainard, PhD (Jefferson Medical College); Ronald Gibbons, PhD (Virginia Tech); Steven Lockley, PhD (Brigham and Women’s Hospital, Harvard Medical School); Richard Stevens, PhD (University Connecticut Health Center); and Mario Motta, MD (CSAPH, Tufts Medical School)

Odkazy k článku Světlo a jeho vliv na organismus

[1] http://www.college-optometrists.org/en/college/museyeum/online_exhibitions/observatory/newton.cfm
[2] Chris Kresser, Februarz 22, 2013, How artificial light is wrecking your sleep, and what to do about it, http://chriskresser.com/how-artificial-light-is-wrecking-your-sleep-and-what-to-do-about-it/
[3] Pickard G.E., Sollars P.J.: Intrinsically photosensitive retinal ganglion cells.
[on-line]. 2012. [cit. 26. 11. 2015]. Dostupné z: http://www.ncbi.nlm.nih.gov/pubmed/22160822
[4] Valentin Dragoi, Ph.D.: OcularMotor System [on-line]. [cit. 26. 11. 2015]. Dostupné z: http://neuroscience.uth.tmc.edu/s3/chapter07.html
[5] Joshua Foer, Michel Siffre, 2008, Caveman: An Interview with Michel Siffre, https://neuron.illinois.edu/files/U3_L1_Supplement_Caveman.pdf
[6] Rodrigo Noseda1, Vanessa Kainz1, Moshe Jakubowski1, Joshua J. Gooley2, Clifford B. Saper2,3, Kathleen Digre4, Rami Burstein1,3, 2010, A neural mechanism for exacerbation of headache by light, 1Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
2Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
3Beth Israel Deaconess Medical Center and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
4Department of Neurology and Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818758/
[7] Steven D. Ehrlich, NMD, Solutions Acupuncture, a private practice specializing in complementary and alternative medicine, Phoenix, AZ. Review provided by VeriMed Healthcare Network. Also reviewed by the A.D.A.M. Editorial team, 2014, Melatonin http://umm.edu/health/medical/altmed/supplement/melatonin
[8] https://witness.theguardian.com/assignment/534eae16e4b056a9012cd8fe/938391
[9] Laura Beil, 2014, In Eyes, a Clock Calibrated by Wavelengths of Light,
http://www.nytimes.com/2011/07/05/health/05light.html?pagewanted=all&_r=0
[10] George C. Brainard 1, John P. Hanifin 1, Jeffrey M. Greeson 1, Brenda Byrne 1, Gena Glickman 1, Edward Gerner 1, Mark D. Rollag 2, 2001, Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor, 1 Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, 2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814 http://www.jneurosci.org/content/21/16/6405.full.pdf
[11] http://www.health.harvard.edu/staying-healthy/blue-light-has-a-dark-side
[12] Prof. RNDr. Helena Illnerová, DrSc. 2014 Čas pro světlo Rozhovor s Pavlem Kovářem, nakladatelství Portál
[13] Robert L. Sack 1, Dennis Auckley 2, R. Robert Auger 3, Mary A. Carskadon 4, Kenneth P. Wright, Jr. 5, Michael V Vitiello 6, Irina V. Zhdanova 7, 2007, Circadian Rhythm Sleep Disorders: Part I, Basic Principles, Shift Work and Jet Lag DisordersAn American Academy of Sleep Medicine Review
An American Academy of Sleep Medicine Review, 1 Department of Psychiatry, Oregon Health Sciences University, Portland, OR, 2 Cleveland, OH, 3 Mayo Clinic Sleep Disorders Center, Mayo Clinic, Rochester, MN, 4 Dept. Psychiatry & Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI
5 Department of Integrative Physiology, University of Colorado, Boulder, CO, 6 Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 7 Department of Anatomy and Neurobiology, Boston University, Boston, MA, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082105/
[14] Joshua J. Gooley, Kyle Chamberlain, Kurt A. Smith, Sat Bir S. Khalsa, Shantha M. W. Rajaratnam, Eliza Van Reen, Jamie M. Zeitzer, Charles A. Czeisler, and Steven W. Lockley, 2010, Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Division of Sleep Medicine (J.J.G., K.A.S., S.B.S.K., S.M.W.R., E.V.R., J.M.Z., C.A.C., S.W.L.), Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Faculty of Health and Medical Sciences (K.C.), University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047226/#%21po=1.56250
[15] Weinhouse GL, Schwab RJ. Sleep in the critically ill patient. Sleep 2006;29(5):707–16., http://www.journalsleep.org/Articles/290519.pdf
[16] Chellappa SL 1, Steiner R, Blattner P, Oelhafen P, Götz T, Cajochen C. 2011, Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert?, 1 Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland. https://www.ncbi.nlm.nih.gov/pubmed/21298068
[17] Viola AU 1, James LM, Schlangen LJ, Dijk DJ. 2008, Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. 1 Surrey Sleep Research Centre, Clinical Research Centre, Egerton Road, Guildford, United Kingdom. http://www.ncbi.nlm.nih.gov/pubmed/18815716?dopt=Abstract
[18] Robert T. Dauchy, Shulin Xiang, Lulu Mao, Samantha Brimer, Melissa A. Wren, Lin Yuan, Muralidharan Anbalagan, Adam Hauch, Tripp Frasch, Brian G. Rowan1, David E. Blask, and Steven M. Hill, 2014, http://cancerres.aacrjournals.org/content/early/2014/07/18/0008-5472.CAN-13-3156.full.pdf
[19] Laura K. Fonken, Randy J. Nelson, 2011, Illuminating the deleterious effects of light at night, Department of Neuroscience and The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169904/
[20]Dustin M. Graham, Kwoon Y. Wong, 16.8.2015, Melanopsin-expressing, Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs)
http://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/melanopsin-expressing-intrinsically-photosensitive-retinal-ganglion-cells/
[21] Marc Green, 2013, Night Vision, http://www.visualexpert.com/Resources/nightvision.html
[22] https://en.m.wikipedia.org/wiki/Melanopsin
[23] Richard G. Stevens 1, David E. Blask 2, George C. Brainard 3, Johnni Hansen 4, Steven W. Lockley 5, Ignacio Provencio 6, Mark S. Rea 7, Leslie Reinlib 8, 2007, Meeting Report: The Role of Environmental Lighting and Circadian Disruption in Cancer and Other Diseases, 1 University of Connecticut Health Center, Farmington, Connecticut, USA, 2 Bassett Research Institute, Cooperstown, New York, USA
3 Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA, 4 Danish Cancer Society, Copenhagen, Denmark
5 Harvard Medical School, Boston, Massachusetts, USA
6 Department of Biology, University of Virginia, Charlottesville, Virginia, USA, 7 Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA
8 Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964886/
[24] International Dark-Sky Association, 2010, Visibility, Environmental, and Astronomical Issues Associated with Blue-Rich White Outdoor Lighting http://www.darksky.org/assets/documents/Reports/IDA-Blue-Rich-Light-White-Paper.pdf
[25] Revell VL, Skene DJ. 2007, Light-induced melatonin suppression in humans with polychromatic and monochromatic light, 1 Faculty of Health and Medical Sciences, Human Chronobiology Group, University of Surrey, Guildford, Surrey, UK.
http://www.ncbi.nlm.nih.gov/pubmed/18075803?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_SingleItemSupl.Pubmed_Discovery_RA&linkpos=2&log$=relatedarticles&logdbfrom=pubmed
[26] Joshua J. Gooley 1,2,3, Shantha M. W. Rajaratnam 1,2,4, George C. Brainard 5, Richard E. Kronauer 1,2,6, Charles A. Czeisler 1,2, Steven W. Lockley 1,2, 2010, Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light, 1Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
1. 2Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
2. 3Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
3. 4School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
4. 5Department of Neurology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
5. 6School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. https://sleep.med.harvard.edu/news/356/Green+Light+Affects+Circadian+Rhythm
[27] J. Kelly Beatty, Rachel Thessin, 2006, Bright Lights, Big Problems, http://www.skyandtelescope.com/astronomy-resources/bright-lights-bigproblems/
[28] Camille M. Carlisle, 2012, AMA Addresses Light Pollution, http://www.skyandtelescope.com/astronomy-news/ama-addresses-light-pollution/
[29] Manuel Spitschan, Sandeep Jain, David H. Brainard, Geoffrey K. Aguirre, 2014, Opponent melanopsin and S-cone signals in the human pupillary light response, Departments of a Psychology and b Neurology, University of Pennsylvania, Philadelphia, PA 19104, http://www.pnas.org/content/111/43/15568.full.pdf
[30] Misha Vorobyev1* and D. Osorio2, 1989, Receptor noise as a determinant of colour thresholds, 1Institut fu« r Neurobiologie, Freie Universita« t Berlin, Ko« nigin-Luise-Strasse 28^30, 14195 Berlin, Germany
2School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1688899/pdf/9523436.pdf
[31] Joshua J. Gooley,1,2,3 Ivan Ho Mien,4 Melissa A. St. Hilaire,2,3 Sing-Chen Yeo,5 Eric Chern-Pin Chua,1 Eliza van Reen,2,3 Catherine J. Hanley,2 Joseph T. Hull,2,3 Charles A. Czeisler,2,3 and Steven W. Lockley2,3, 2012, Melanopsin and Rod–Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans, 1 Program in Neuroscience and Behavioral Disorders, Duke–National University of Singapore Graduate Medical School Singapore, Singapore 169857, 2 Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, and 3 Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, 4 Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, and 5 National Neuroscience Institute, Singapore 308433, http://www.jneurosci.org/content/32/41/14242.full.pdf
[32] Watchara Sroykham, Student Member, IEEE and Yodchanan Wongsawat, Member, IEEE, 2013, Effects of LED-backlit Computer Screen and Emotional Selfregulation on Human Melatonin Production, 35th Annual International Conference of the IEEE EMBS Osaka, Japan, https://www.gwern.net/docs/melatonin/2013-sroykham.pdf
[33] National Institute of Health (2011) National Institutes of Health Sleep Disorders Research Plan Publication No. 11–7820, U.S. Department of Health and Human Services, NIH, https://www.nhlbi.nih.gov/files/docs/resources/sleep/201101011NationalSleepDisordersResearchPlanDHHSPublication11-7820.pdf
[34] National Institute of Health, Circadian Rhythms Fact Sheet, http://www.nigms.nih.gov/Education/Pages/Factsheet_CircadianRhythms.aspx
[35] National Institutes of Health (2011, November 9) National Institutes of Health. Retrieved June 2, 2014, from Updated NIH Sleep Disorders Research Plan seeks to promote and protect sleep health, http://www.nih.gov/news/health/nov2011/nhlbi-09.htm
[36] Council on Science and Public Health (A-12), American Medical Association, 2012, http://factsaboutgmos.org/sites/default/files/AMA%20Report.pdf
[37] MMWR Morb Mortal Wkly Rep. 2011 Mar 4;60(8):233–8., http://www.cdc.gov/mmwr/pdf/wk/mm6008.pdf
[38] Macchi M, Bruce J (2004). “Human pineal physiology and functional significance of melatonin”. Front Neuroendocrinol 25 (3–4): 177–95. doi: 10.1016/j.yfrne.2004.08.001. PMID 15589268, http://www.sciencedirect.com/science/article/pii/S0091302204000196